Simple Pendulum Model using Lagrange Equations of Motion

From ControlTheoryPro.com

Jump to: navigation, search
Symbol.gif
Simple Pendulum Model using Lagrange Equations of Motion
Green carrot left.gif
Modeling Examples
Green carrot.jpg
In order to prevent spam, users must register before they can edit or create articles.


1 Simple Pendulum Model using Lagrange Equations of Motion

Simple Pendulum

A common problem in physics and controls is the simple pendulum. The system is easily described with a few parameter:

  • M: Mass at end of pendulum
  • l: Length of pendulum
  • θ: Angular position of pendulum

Start with the Lagrange function (see Lagrange Equation of Motion for Conversative Forces & Lagrange Equations of Motion for NonConservative Forces for more information on Lagrange Equations of Motion) below

LaTeX: L=K-U Lagrange Function


Define Kinetic Energy

LaTeX: K=\frac{1}{2}Ml^2\dot \theta^2 Kinetic Energy


and Potential Energy

LaTeX: U=Mgl\left(1- \cos \theta \right). Potential Energy


Substitute the Kinetic Energy and Potential Energy equations into the Lagrange function. The results is

LaTeX: \begin{alignat}{2}
<p>L & = & K-U \\
& = & \frac{1}{2}Ml^2 \dot \theta^2 - Mgl\left(1- \cos \theta \right)
</p>
\end{alignat}. '


Now that we've defined L we can move on to the Lagrange Equation below

LaTeX: \frac{d}{dt}\left( \frac{\partial L}{\partial \dot \theta} \right)-\frac{\partial L}{\partial \theta}=0. Lagrange Equation


To make things simple we will determine LaTeX: \frac{\partial L}{\partial \dot \theta} and LaTeX: \frac{\partial L}{\partial \theta}. Let's begin with

LaTeX: \begin{alignat}{2}
<p>\frac{\partial L}{\partial \dot \theta} & = & \frac{\partial}{\partial \dot \theta}\left(\left(\frac{1}{2}Ml^2\right)\dot \theta^2+Mgl \cos \theta - Mgl\right) \\
& = & \left(\frac{1}{2}Ml^2\right)\frac{\partial}{\partial \dot \theta}\left(\dot \theta^2\right) \\
& = & Ml^2 \dot \theta
</p>
\end{alignat}. '


Then

LaTeX: \begin{alignat}{2}
<p>\frac{\partial L}{\partial \theta} & = & \frac{\partial}{\partial \theta}\left(\left(\frac{1}{2}Ml^2\right)\dot \theta^2+Mgl \cos \theta - Mgl\right) \\
& = & \frac{\partial}{\partial \theta}\left(Mgl \cos \theta \right) \\
& = & -Mgl \sin \theta
</p>
\end{alignat}. '


Put these back into the Lagrange Equation to get

LaTeX: \begin{alignat}{2}
<p>\frac{d}{dt}\left( \frac{\partial L}{\partial \dot \theta} \right)-\frac{\partial L}{\partial \theta} & = & 0 \\
& = & \frac{d}{dt}\left(Ml^2 \dot \theta\right)+Mgl \sin \theta \\
& = & Ml^2 \ddot \theta + Mgl \sin \theta \\
</p>
\end{alignat}. '


And ultimately we end up with a final Simple Pendulum model via the Lagrange Equations of Motion of

LaTeX: \begin{alignat}{2}
<p>\ddot \theta & = & \frac{-Mgl \sin \theta}{Ml^2} \\
& = & -\frac{g}{l} \sin \theta
</p>
\end{alignat} '



2 Notes

  • Zak, Stanislaw H. Systems and Control. Oxford University Press, New York, 2003. ISBN 0195150112.


2.1 References