Reaction Cancellation

From ControlTheoryPro.com

Jump to: navigation, search
Symbol.gif
Reaction Cancellation
Green carrot left.gif
Modeling Example
Green carrot.jpg
In order to prevent spam, users must register before they can edit or create articles.


1 Introduction to Reaction Cancellation

Ground and space based astronomy require the position of their optics to be stable to an unprecendented level. This level of stability often relies on feedback sensors that are pushing the edge of what is possible. This level of stability also requires a stable platform. This requires reaction cancellation.

If we control the system's line-of-sight (LOS) by moving a mirror and that mirror has enough inertia then reaction cancellation is used to cancel out the mirror's motion. The mirror's motion induces a torque on the platform it is mounted to. A dummy mass is moved so that it produces an equal and opposite torque. This reaction mass cancels out the mirror's motion leading to the name reaction cancellation.

2 Rigid Body Model for Reaction Cancellation

A mass attached to a spring and a damper. The F in the diagram denotes an external force, which this example does not include.

For a system of linear translation

LaTeX: \sum F = ma = m \ddot{x} = m \frac{d^2x}{dt^2}


where

LaTeX: a is the acceleration (in m/s2) of the mass,
LaTeX: m is mass and
LaTeX: x is the displacement (in m) of the mass relative to a fixed point of reference.

For a rotational system

LaTeX: \sum \Tau = I \ddot{\theta} = I \frac{d^2\theta}{dt^2}


where

LaTeX: \theta is the angular displacement (in rad) of the inertia relative to a fixed point of reference and
LaTeX: I is the inertia.

The above equations combine to form the equation of motion, a second-order differential equation for displacement θ as a function of time t (in seconds).

LaTeX: I \ddot{\theta} + B \dot{\theta} + k \theta = 0.\,


where

LaTeX: B is the damping coefficient and
LaTeX: k is the spring force constant.

Rearranging, we have

LaTeX: \ddot{\theta} + \frac{B}{I} \dot{\theta} + \frac{k}{I} \theta,


then

LaTeX: \ddot{\theta} = -\frac{B}{I} \dot{\theta} + -\frac{k}{I} \theta



2.1 State Space Model of Rigid Body Reaction Cancellation

Figure 2: Reaction Cancellation double Mass

Figure 2 shows a 2 DOF Rigid Body model. This example is for rotation but Figure 2 is good enough. Figure 2 breaks up the rigid body diagram into Left and Right halves and the Mounting plate. The state space form of this equation for a single axis is

LaTeX: \begin{bmatrix}\ddot{\theta} \\ \dot{\theta}\end{bmatrix}=\begin{bmatrix}-\frac{B}{I} & -\frac{k}{I} \\ 1 & 0\end{bmatrix} \begin{bmatrix}\dot{\theta} \\ \theta\end{bmatrix}+\begin{bmatrix}\frac{1}{I} \\ 0\end{bmatrix}\begin{bmatrix}\tau\end{bmatrix}



In order to calculate the reaction cancellation we need to know the torque imposed on the mounting plate from both the mirror and the reaction mass. For the mounting plate the torque is

LaTeX: \Tau_{Mount}=\ddot{\theta}_{Mount}I_{Mount}=\Tau_{Mirror}+\Tau_{ReactionMass}



Therefore

LaTeX: \ddot{\theta}_{Mount}=\frac{1}{I_{Mount}}\left(I_{Mirror}\ddot{\theta}_{Mirror}+I_{ReactionMass}\ddot{\theta}_{ReactionMass}\right)



So for the mirror's contribution to the imposed torque on the mounting plate

LaTeX: \begin{bmatrix}\ddot{\theta}_{Mount, Mirror} \\ \dot{\theta}_{Mount, Mirror}\end{bmatrix}=\frac{I_{Mirror}}{I_{Mount}}\begin{bmatrix}-\frac{B_{Mirror}}{I_{Mirror}} & -\frac{k_{Mirror}}{I_{Mirror}} \\ 1 & 0\end{bmatrix} \begin{bmatrix}\dot{\theta}_{Mirror} \\ \theta_{Mirror}\end{bmatrix}+\begin{bmatrix}\frac{1}{I_{Mirror}} \\ 0\end{bmatrix}\begin{bmatrix}\tau_{Mirror}\end{bmatrix}



Using the following abbreviations Mount = Mnt, Mirror = Mr, and ReactionMass = RM the full state space reaction cancellation model for a single axis is

LaTeX: \begin{bmatrix}\ddot{\theta}_{Mr} \\ \dot{\theta}_{Mr} \\ \ddot{\theta}_{Mnt} \\ \dot{\theta}_{Mnt} \\ \ddot{\theta}_{RM} \\ \dot{\theta}_{RM}\end{bmatrix}LaTeX: =\begin{bmatrix}-\frac{B_{Mr}}{I_{Mr}} & -\frac{k_{Mr}}{I_{Mr}} & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{B_{Mr}}{I_{Mnt}} & \frac{k_{Mr}}{I_{Mnt}} & 0 & 0 & \frac{B_{RM}}{I_{Mnt}} & \frac{k_{RM}}{I_{Mnt}} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{B_{RM}}{I_{RM}} & -\frac{k_{RM}}{I_{RM}} \\ 0 & 0 & 0 & 0 & 1 & 0\end{bmatrix} LaTeX: \begin{bmatrix}\dot{\theta}_{Mr} \\ \theta_{Mr} \\ \dot{\theta}_{Mnt} \\ \theta_{Mnt} \\ \dot{\theta}_{RM} \\ \theta_{RM}\end{bmatrix}+LaTeX: \begin{bmatrix}\frac{1}{I_{Mr}} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \frac{1}{I_{RM}} \\ 0 & 0\end{bmatrix}LaTeX: \begin{bmatrix}\tau_{Mr} \\ \tau_{RM}\end{bmatrix}



Simplifying for the reaction cancellation in the x-axis

LaTeX: \dot{x}_{x}=\begin{bmatrix}\ddot{\theta}_{Mr} \\ \dot{\theta}_{Mr} \\ \ddot{\theta}_{Mnt} \\ \dot{\theta}_{Mnt} \\ \ddot{\theta}_{RM} \\ \dot{\theta}_{RM}\end{bmatrix}_{x}



LaTeX: A_{x}=\begin{bmatrix}-\frac{B_{Mr}}{I_{Mr}} & -\frac{k_{Mr}}{I_{Mr}} & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{B_{Mr}}{I_{Mnt}} & \frac{k_{Mr}}{I_{Mnt}} & 0 & 0 & \frac{B_{RM}}{I_{Mnt}} & \frac{k_{RM}}{I_{Mnt}} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{B_{RM}}{I_{RM}} & -\frac{k_{RM}}{I_{RM}} \\ 0 & 0 & 0 & 0 & 1 & 0\end{bmatrix}_{x}



LaTeX: B_{x}=\begin{bmatrix}\frac{1}{I_{Mr}} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \frac{1}{I_{RM}} \\ 0 & 0\end{bmatrix}_{x}



LaTeX: u_{x}=\begin{bmatrix}\tau_{Mr} \\ \tau_{RM}\end{bmatrix}_{x}



LaTeX: \dot{x}_{x}=A_{x}x_{x}+B_{x}u_{x}



For 2 axes the reaction cancellation state space equations become

LaTeX: \begin{bmatrix}\dot{x}_{x} \\ \dot{x}_{y}\end{bmatrix}=\begin{bmatrix}A_{x} & 0 \\ 0 & A_{y}\end{bmatrix} \begin{bmatrix}x_{x} \\ x_{y}\end{bmatrix}+\begin{bmatrix}B_{x} \\ B_{y}\end{bmatrix} \begin{bmatrix}u_{x} \\ u_{y}\end{bmatrix}



For a rigid body model the mounting plate imposed torque can be determined with the mounting plate inertia and angular acceleration therefore

LaTeX: C_{x}=\begin{bmatrix}0 & 0 & 0 & 1 & 0 & 0\end{bmatrix}_{x}



This Cx provides the angular position of the mounting plate

LaTeX: y=\begin{bmatrix}C_{x} & 0 \\ 0 & C_{y}\end{bmatrix}\begin{bmatrix}x_{x} \\ x_{y}\end{bmatrix}+0\begin{bmatrix}\tau_{x} \\ \tau_{y}\end{bmatrix}



This y is only the x and y angular position of the mounting plate. Using MATLAB or Simulink we can add 2 derivatives to the state space output providing mounting plate angular accelerations. This angular acceleration can be multiplied by the mounting plate inertia to determine the residual torque in the mounting plate. Thus the error in the reaction cancellation.

3 See Also

Reaction Cancellation Example